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Abstract: Music is an important signal class for hearing aids, and musical genre is often used as a descriptor for stimulus selec-
tion. However, little research has systematically investigated the acoustical properties of musical genres with respect to hearing
aid amplification. Here, extracts from a combination of two comprehensive music databases were acoustically analyzed.
Considerable overlap in acoustic descriptor space between genres emerged. By simulating hearing aid processing, it was shown
that effects of amplification regarding dynamic range compression and spectral weighting differed across musical genres, under-
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1. Introduction

Participation in musical activities can promote social cohesion, can contribute to an individual’s overall well-being
(Bullack et al., 2018; Clift and Hancox, 2010), and is thought to offer numerous social, psychological, and cognitive bene-
fits. For individuals with hearing impairments, these benefits can be particularly significant, as music can help alleviate
feelings of isolation and improve self-esteem (Darrow, 2006). However, the enjoyment and benefits of music can be com-
promised by the limitations of current hearing aid technology, which is primarily optimized for speech perception (Chasin
and Russo, 2004). Therefore, improving music perception through hearing aids has potential to significantly enhance the
quality of life of hearing aid users.

A special music program in most hearing aids typically involves modifications of the standard signal processing
components to better accommodate the unique characteristics of music. First, amplification rules are often adjusted to
enhance perception of lower frequencies while preserving audibility over the widest possible bandwidth (Moore, 2016;
Moore et al., 2016; Vaisberg et al., 2021). Second, dynamic range compression (DRC), which reduces the range of output
levels between the weakest and strongest sounds, is often minimized or turned off in the music program because excessive
DRC can distort the musical signal and reduce sound quality (Arehart et al., 2011; Croghan et al., 2014; Kirchberger and
Russo, 2016a; Madsen et al., 2015; Vaisberg et al., 2021). However, results from experiments using recorded stimuli might
not apply to listening situations with a larger dynamic range where audibility might be challenged with more linear ampli-
fication. Third, frequency lowering, a technique used to make high-frequency sounds audible by shifting them to lower fre-
quencies, may also be specifically adapted to improve the quality of music perception (Kirchberger and Russo, 2016b).
Last, adaptive features such as feedback cancellation or noise reduction are often deactivated or reduced in the music pro-
gram. The latter feature, while beneficial for speech understanding in noisy environments, can inadvertently alter the musi-
cal signal and degrade the listening experience (Greasley et al., 2020; Kim et al., 2020; Madsen and Moore, 2014).

Research on hearing aid signal processing and its impact on music perception often employs different music
genres as part of the evaluation process. This approach is based on the assumption that different music genres, with their
unique acoustic characteristics, can interact in non-systematic ways with various signal processing changes, thereby
influencing the perceived audio quality (Arehart et al., 2011; Kirchberger and Russo, 2016a; Moore and SeRk, 2016). The
interaction between music genre and hearing aid processing is complex and can vary, depending on the specific character-
istics of the music and the type of signal processing applied (Madsen and Moore, 2014; Vaisberg et al., 2021). For instance,
DRC (Croghan et al., 2014) or frequency lowering (Kirchberger and Russo, 2016b) might be perceived differently, depend-
ing on the music genre. This non-systematic interaction underscores the complexity of optimizing hearing aid technology
for music listening.
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The acoustical properties of music samples used for audio quality evaluation, particularly dynamic range and
long-term spectrum, are key considerations in the cited studies. Kirchberger and Russo (2016a) reported that samples
from more classical genre, such as opera and orchestra, typically have a wider dynamic range than samples from more
modern music, like pop, rock, or rap. The long-term spectrum is also flatter for music with percussive sounds present in
more modern music productions (Arehart et al., 2011; Davies-Venn et al., 2007). The dynamic range and the spectrum of
the input signal play a critical role when evaluating different DRC approaches and might also explain some interactions
between the different tested signal processing conditions and the tested samples (Croghan et al., 2014; Davies-Venn et al.,
2007; Moore and SeRk, 2016; Vaisberg et al., 2021). So far, this interaction has not been systematically evaluated. Moreover,
the process by which musical genre and test stimuli are selected is not always transparent in the literature.

Music genres (e.g., pop, rock, classical orchestral, or choir) reflect certain shared conventions or characteristics
among pieces of music, such as commonalities in form, style, or subject matter (Fabbri, 1981). These characteristics can
encompass a wide range of elements, including melody, rhythm, harmony, lyrics, instrumentation, and production techni-
ques (Tagg, 2012). However, defining music genres is not always straightforward. The boundaries between genres and sub-
genres can often be fluid and subjective and may be influenced by cultural or historical trends (Brackett, 2023). While
some genres are easily distinguishable by their unique characteristics, others may overlap, making it challenging to catego-
rize a piece of music definitively into a single genre (Negus, 2013). This complexity reflects the rich diversity and evolving
nature of music (Mauch et al., 2015).

While music genre serves as a useful categorization tool in hearing aid research, it presents a significant chal-
lenge: A single music sample used for testing, although defined by its genre, may not be representative of the entire genre.
This is due to the inherent variability within each genre, a factor that is neither well understood nor extensively studied.
Consequently, generalizing the findings of audio quality evaluations based on a single sample to an entire genre becomes
problematic. This leads us to two research questions: (1) How can we generalize the findings of audio quality evaluations
to an entire genre given the within-genre variability? (2) Is the effect of hearing aid amplification homogeneous both
between genres and within a single genre? Addressing these questions would improve our understanding of music percep-
tion with hearing aids and help to optimize hearing aid technology for diverse music listening experiences.

In the present study, we assessed the acoustical variability of music stimuli using an approach based on elemen-
tary spectral and level-based audio descriptors. We considered variability between and within genres as well as between
different time windows within pieces. Further, we studied how hearing aid processing using fast-acting and slow-acting
DRC is affected by this variability, in terms of descriptors assessing dynamic range, spectral centroid (SC), and ratio of
harmonic to percussive energy.

2. Methods

2.1 Audio database, sample selection, loudness normalization

A database of recorded music was compiled based on previous research projects (Gerdes and Siedenburg, 2023;
Kirchberger and Russo, 2016a), together yielding a repository of 1403 pieces of music. Music genre labels were used as
stated in the reference papers and were arranged into 12 classes, representing a range of different types of Western music,
namely chamber, orchestra, opera, choir, piano, jazz, country, schlager (a Central European pop music genre usually with
German lyrics), rap, pop, rock, and metal.

Each entire piece was first normalized in loudness relative to full scale according to the ITU-R BS.1770 standard
(International Telecommunication Union, 2003) and then adjusted to be played back at 70 dB sound pressure level (SPL)
for the hearing aid input level. This approach approximately matches the average preferred listening level for hearing aid
users (Croghan et al., 2016) and allows the level to vary between extracted samples, as would naturally be the case when
listening to a piece with loud and soft passages. Three 20 s samples were randomly extracted from each third of the piece
to add some within-piece variability to the data set, reflecting the possibility that a single piece may feature soft and loud
excerpts or different instrumentations. This procedure produced a total of 4209 music samples of 20 s duration. The acous-
tical analysis was performed on the normalized raw samples processed by a hearing aid simulator with 0 dB linear inser-
tion gain and with compressive amplification.

2.2 Computation of audio descriptors

Each sample was available in stereo wave file format. Audio descriptors were extracted for both left and right channels
and then averaged. The descriptors focused primarily on energy and spectral information, as these are the main aspects
affected by the gain model under investigation (Kirchberger and Russo, 2016a).

The root-mean square (RMS) energy of the signal was calculated with a sliding rectangular window with 93ms
duration and a step size of 46ms (M€uller, 2015). The peak-to-average ratio was also selected to provide additional infor-
mation about the dynamic range of the signal (Chasin and Russo, 2004). It was expected that DRC would increase the
median root-mean-square (RMS) value and reduce the standard deviation (SD) of the RMS values (RMS SD).

Spectral information was extracted using statistical moments of the spectral distribution (Caetano et al., 2019).
The SC was calculated as the center of gravity of the frequencies present in the sound (with amplitude magnitudes as
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weights) (Tzanetakis and Cook, 2002), corresponding to the perceived “brightness” of a musical mix (Siedenburg et al.,
2021). The spectral bandwidth, an amplitude-weighted SD of the spectrum, provides a measure of the dispersion of the
energy in the spectrum around its mean frequency (M€uller, 2015). SC and spectral bandwidth were computed from time-
frequency representations based on the center frequencies of a GAMMATONE FILTERBANK (MathWorks, Natick, MA) evenly
spaced on the equivalent rectangular bandwidth (ERB) scale (Patterson et al., 1995). The median, SD, and skewness of the
audio descriptor distributions were extracted to summarize spectral information for each sample.

Three additional audio descriptors were extracted as they could provide complementary indirect information
about energy and spectral content: zero-crossing rate, harmonic-to-percussive ratio (H2P), and spectral flatness via Wiener
entropy (M€uller, 2015). Regarding the latter descriptor, a sound is said to be more “noisy” or “atonal” when it has higher
spectral flatness and more “tonal” when it has lower spectral flatness. Broadband zero-crossing rate is the rate of a signal’s
sign change and has been successfully used for music genre classification (Yi et al., 2021). Harmonic-percussive source sep-
aration based on median filtering was used to estimate the energy ratio between extracted harmonic and percussive signals
(H2P). Filtering along the time axis will retain the harmonic or pitched signals, and filtering along the frequency axis will
extract the percussive components (M€uller, 2015). The central tendency and SD of these audio descriptors were computed.
These descriptors were extracted using the LIBROSA library (McFee et al., 2015).

2.3 Hearing aid amplification

Hearing aid amplification was applied with an audio plugin (AUDIO PLUGIN GENERATOR; dlab, Winterthur, Switzerland) using
batch processing from the digital audio workstation Adobe Audition (Adobe Systems, San Jose, CA). Initial processing
using a 0 dB flat insertion gain was used to generate the real-ear unaided response as a reference. The real-ear aided
response was generated with the fast- and slow-acting DRC settings to apply the amplification defined by the NAL-NL2
fitting rationale (Keidser et al., 2011) for a moderate-to-severe N4 hearing loss (Bisgaard et al., 2010). The effect of ampli-
fication was then computed as the difference between the descriptors for the aided and the unaided real-ear responses to
ensure identical bandwidth and to account for the real-ear unaided gain.

DRC was applied in 20 bands approximating the Bark scale from 100Hz to 10 kHz. Compressive amplification
had an average compression ratio of 2.5. It was applied separately as fast-acting DRC with an attack time (AT) of 10ms
and release time (RT) of 60ms and as slow-acting DRC with an AT of 1 s and RT of 8 s (Chen et al., 2021). With fast-
acting DRC, the gain is adjusted with a finer temporal resolution than with slow-acting DRC in order to make weaker
parts of the input signal more audible and to prevent loudness discomfort from sudden loud sounds. However, this might
introduce unwanted artefacts, compromising audio quality as fast-acting DRC is known to flatten the temporal envelope.
It is also expected that the spectral envelope is flattened if level estimation is performed independently in all compression
bands, reducing the contrast between high and low energy parts of the spectrum (Croghan et al., 2014; Plomp, 1988).

3. Results

3.1 Between-genre variability

Variability and correlations between the 16 audio descriptors, extracted for all the unprocessed samples, were summarized
in a principal component analysis (PCA). The median and SD were obtained from the distributions of the RMS, SC, spec-
tral bandwidth, spectral flatness, zero-crossing rate, and H2P ratio. Skewness of the RMS, SC, and spectral bandwidth and
peak-to-average value were also calculated. All the data were centered and scaled to unit variance before computing the
PCA. The first four dimensions from the PCA were retained as their eigenvalues were higher than 1. These dimensions
explained 80.4% of the cumulative variance in the data. The first dimension explained 44.5% and the second dimension
18.9% of the total variance. Individual observations grouped by genre as well as the loadings of the original variables on
the first two principal components are shown in Fig. 1, including genre-specific 95% confidence ellipses.

Considering the contribution of individual audio descriptors, the first dimension received strong contributions of
the median SC (11.4%), spectral bandwidth (11.1%), spectral flatness (11.0%), and H2P ratio (9.8%). There were negative
correlations between H2P ratio and median SC (r ¼ �0:72), bandwidth (r ¼ �0:70), and flatness (r ¼ �0:73), suggesting
that percussive components have a flatter and wider spectrum. This matches the mean genre distribution in the two-
dimensional (2D) projection, ranging from piano, orchestra, choir, chamber, and opera, with the lowest values on dimen-
sion 1 (corresponding to a high H2P ratio and low SCs, bandwidth, and flatness), to jazz and country, in the middle range
of dimension 1, up to rap, metal, schlager, pop, and rock, with the highest values on dimension 1.

The second dimension received strong contributions of RMS SD (13.5%), SC SD (12.4%), and the peak-to-aver-
age ratio (11.4%). The RMS SD and peak-to-average ratio were highly correlated (r¼ 0.86), both reflecting the dynamic
range of the signal. Interpreting the exact acoustic meaning of this dimension is not straightforward. However, within the
more “modern” genres, the results suggest that there is more variability in the audio descriptors in decreasing order for
the rap, pop rock, schlager, and metal genres. Overall, the confidence ellipses suggest that there is large within-genre vari-
ability, leading to a large overlap of audio descriptor distributions between genres. Only the ellipse for the piano genre was
clearly separated from the ellipses for the rap and schlager genres. This indicates that the gross acoustical properties of
most popular genres overlap to a substantial extent.
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3.2 Within-piece variability

Within-piece variability for four selected recordings, the excerpts of which were closest to the genre mean in the PCA space, is
illustrated in Fig. 2 for two orchestral pieces and two popular genre pieces. Projected audio descriptor distribution on the PCA
dimensions for the first classical piece (Mozart, Symphonie No. 1) was located in one specific domain of the descriptor space,
namely towards the central portion of the space. However, the second classical piece (Smetana, Hakon Jarl) gave a distribution
of values that filled more than half of the confidence ellipse of the orchestra genre in addition to a specific trajectory beyond
the ellipse boundaries. Note that this piece is also extraordinarily diverse from a musical point of view, so it is no surprise that
the audio descriptor distribution falls outside the regions of relatively high density for the orchestra genre. A similar, albeit a lit-
tle less drastic situation occurred for the two popular genre pieces. Whereas the first piece (Sheryl Crow, All I Wanna Do)
exhibited a fairly focused distribution of values within the cluster for popular music, audio descriptor values of the second piece
(Lady Gaga, Just Dance) were more widely spread in the space and fell partly outside the confidence ellipse.

Based on this global analysis of a large set of pieces from different musical genres as well as “microscopic” analy-
sis of the excerpts from single pieces, we conclude that isolated excerpts of randomly drawn pieces are often not represen-
tative of the acoustical properties of a specific musical genre nor representative of the piece itself. A pragmatic, statistically
based recommendation from these findings is to include samples and genre variables as random effects in the statistical
evaluation (Barr et al., 2013), which may help to generalize findings beyond the selected test material.

3.3 Effect of amplification by genre

Figure 3 shows a 2D density plot of the distribution of the RMS SD and SC descriptors on the left and H2P ratio and SC
SD on the right for the unaided condition in the top row. The median effect of hearing aid amplification (i.e., the

Fig. 1. PCA with music genre as grouping variable (left panel) and selected relevant variables (contribution higher than 10%) (right panel)
projected on the two first dimensions (Dim1 and Dim2). Confidence ellipses show the 95% confidence interval for the bivariate distributions.
The most often used genres in the referenced papers, i.e., classical orchestral and pop music, are highlighted to illustrate the overlap. rms, root
mean square; std, standard deviation.

Fig. 2. Samples from single classical (two leftmost panels) and pop (two rightmost panels) pieces obtained from 20 s samples with a 1 s sliding
window. The reference ellipses for pop and classical genres are taken from Fig. 1. Examples with more homogeneous samples within a single
piece and with more heterogeneity between samples are shown for both genres.
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difference of descriptor values in the condition with 0 dB insertion gain minus descriptor values in the aided condition) is
represented via arrows (top row), and its variability is shown with a bivariate distribution of the amplification effect on
the bottom row.

For the relationship between the RMS SD and SC median (left part), there are no clear separating boundaries
between any of the genres, with smooth transitions in audio descriptor values. Genres using solely acoustical instruments
(piano, orchestral) had lower SC values and generally higher RMS SD values. This may partly reflect less drastic use of
compression in these recordings. Notably, the effects of amplification on SC values are much more pronounced for these
more acoustic genres. Whereas there is a median change of SC by about 1 kHz for piano excerpts, there is little amplifica-
tion effect for genres with higher unaided values. As expected, the effects of slow vs fast DRC differ mainly regarding the
change in RMS SD. Whereas fast DRC reduces the RMS SD of chamber and orchestral music excerpts by up to 3 dB, the
reduction is only about 1 dB for genres such as pop, metal, or piano music. For slow DRC, there was no substantial
change in RMS SD, although excerpts of classical pieces were somewhat compressed.

For the relationship between the H2P ratio and SC SD (right part), the unaided bivariate distribution suggests
that genres with acoustic instruments (e.g., piano, orchestra) have a higher H2P ratio and lower SC SD, indicating that
these genres generally comprise sounds with weaker percussive components. Amplification tends to provide a stronger
reduction of SC SD for genres with initially high values such as rap or pop. Furthermore, the magnitude of the reduction
via amplification is more pronounced for fast DRC than for slow DRC. The piano genre has a slightly different behavior
for the SC SD, with no effect for the fast DRC and a slight median increase in 60Hz for the slow DRC. In contrast, no
clear changes in H2P ratio were observed for genres such as metal ( –0.3 dB) or rap ( –0.4 dB). Overall, both the RMS SD
vs SC plots and the H2P vs SC SD plots indicated effects of DRC that were different across the array of genres.

4. Summary and discussion

To evaluate hearing aids and any other hearing technology for music, ecologically valid test stimuli should be used. Our
results indicate, however, that the acoustical properties of music excerpts defined solely by categories of musical genre may
not be representative. The fact that a musical excerpt is labelled “jazz” does not mean that its acoustical properties will be
different from excerpts from other genres. Therefore, there is the risk of over-interpreting results based on a small number
of samples. Generally, our results imply that the description of the acoustical properties of test stimuli used for evaluating
hearing aids might provide more relevant information than their genre label. A rationale for excerpt selection should be
developed with regard to existing within-piece variability, for which the current analysis may serve as a starting point.
Furthermore, the analysis of aided dynamic range and spectral energy distributions, reflecting the effect of the two critical
hearing aid functions of DRC and frequency response, suggests that hearing aids differentially affect excerpts with different

Fig. 3. The median amplification effect (aided/unaided) for each genre for fast and slow DRC is shown in the top row via arrows. The unaided
reference distribution is represented by a two-dimensional density plot. Variability of the amplification effect for each genre is plotted as a
bivariate distribution in the bottom row. The reference lines in red represent no effect. The relationship between the RMS SD and SC median
is shown on the left, and the relationship between H2P ratio and SC SD is shown on the right.
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dynamic range and spectral properties. In sum, a more detailed acoustical description of test conditions is needed to
enable the design of rigorous and reproducible listening experiments into hearing aids for music.
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