Towards a better understanding of aetiology and typology of Auditory Neuropathy Spectrum Disorder

Kai Uus MD PhD
Audiology & Deafness Research Group
School of Psychological Sciences
Faculty of Medical & Human Sciences
The University of Manchester
United Kingdom

24th November 2008 Brighton, UK
Speculate on (not necessarily answer) the following questions:

- What is the epidemiology and aetiology of ANSD in neonates?
- Could knowing the aetiology of ANSD help with ‘phenotyping’?
- Could ‘phenotyping’ help in management decisions?
What is the epidemiology of ANSD in different populations?
Prevalence in PCHL Population

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vohr et al 2001</td>
<td>Universal screening</td>
<td>1.80</td>
</tr>
<tr>
<td>Berlin et al 2000</td>
<td>1000 HI infants</td>
<td>8.70</td>
</tr>
<tr>
<td>Kraus et al 1984</td>
<td>48 HI infants</td>
<td>14.58</td>
</tr>
<tr>
<td>NHSP Evaluation 2004</td>
<td>169 HI infants</td>
<td>10.1</td>
</tr>
</tbody>
</table>
newborns: prevalence in at-risk population

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stein et al 1996</td>
<td>special care nursery</td>
<td>4.00</td>
</tr>
<tr>
<td>Psarommmatis et al 1997</td>
<td>intensive care unit</td>
<td>1.96</td>
</tr>
<tr>
<td>Rance et al 1999</td>
<td>“at-risk” infants</td>
<td>0.23</td>
</tr>
<tr>
<td>NHSP Evaluation 2004</td>
<td>babies in NICU for ≥48 h</td>
<td>0.2</td>
</tr>
</tbody>
</table>
aetiology in SCBU newborns

- prematurity and/or low birth weight
- hyperbilirubinaemia
- anoxia/hypoxia
- ...

24th November 2008 Brighton, UK
• **Kernicterus** often occurs at lower bilirubin concentrations in premature newborns as compared with term newborns.

• A higher sensitivity to **hypoxic-ischemic damage** has been observed in premature infants.
hyperbilirubinaemia

hyperbilirubinaemia

- total serum bilirubin (TSB): 20 mg/dL
- peak total serum bilirubin: 16 mg/dL
- unbound bilirubin
 - term babies: 1 to 2 mg/dL
 - preterm 0.5 mg/dL (Amin et al 2001)
Where does bilirubin damage the auditory system?

– inner ear: NO
– spiral ganglion and auditory nerve: YES
– brainstem auditory nuclei: YES
– thalamus and auditory cortex: NO

anoxia/hypoxia

- chronic mild hypoxia selective inner hair cell loss:
 - human temporal bone (Amatizzi et al 2001)
 - animal studies (Mazurek et al 2003)
prevalence in well-baby population

Low???

1:500,000 (Mehl 2002)

1:200,000 (Australian unpublished data 2005)
prevalence in well-baby population

Low???
1:500,000 (Mehl 2002)
1:200,000 (Australian unpublished data 2005)

...

But:
1:5,700 (Owen et al 2008)
prevalence in well-baby population

Low???
1:500,000 (Mehl 2002)
1:200,000 (Australian unpublished data 2005)

But:
1:5,700 (Owen et al 2008)

And:
ANSD in well-baby population

(Sininger & Oba 2001)

Table 2-1. Patients with onset of auditory neuropathy before age 2 years, grouped by family history and other neonatal risk factors.

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Family or Genetic History</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Hyperbilirubinemia</td>
<td>2</td>
</tr>
<tr>
<td>Prematurity</td>
<td>1</td>
</tr>
<tr>
<td>Multiple risk factors</td>
<td>0</td>
</tr>
<tr>
<td>No other risk factors</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
</tr>
</tbody>
</table>
aetiology in well-baby population

- heredity:
 - autosomal recessive isolated (Varga et al 2003, Delmaghani et al 2006)
 - syndromes e.g. Waardenburg (Pau et al 2006)

- cochlear nerve deficiency (Buchman et al 2006)
 - developmental aplasia/agenesis

- tumor or cyst (e.g. intracranial arachnoid cyst Boudewyns et al 2008)
autosomal recessive isolated ANSD

• **DFNB9** (Varga et al 2003)
• **DFNB59** (Delmaghani et al 2006)
• locus: DFNB9 gene: OTOF
• mutations in the gene encoding otoferlin
• primary lesion at the level of the inner hair cells (IHC)

(Varga et al 2003)
Rodriguez-Ballesteros et al (2008) suggest that mutations in OTOF are a major cause of isolated ANSD

– of patients with ANSD 55-87% (Rodriguez et al 2008)

– 4.4% of recessive familial or sporadic cases of deafness in the Spanish population autosomal recessive isolated HL (Migliosi et al 2002)
• locus: DFNB59 gene: PJFK
• mutations in the gene encoding pejvakin
• primary lesion neurons in the spiral ganglion and the brainstem auditory nuclei

(Delmaghani et al. 2006)
Is transient (neonatal) ANSD worth talking about?
• ABRs have been reported to recover (or improve)
• ABR recovery (or improvement) may happen by up to as late as two years of age (Madden et al 2002)
• perceptual ability may improve even when ABR remains abnormal
prevalence of transient ANSD

• 24% in our pilot data
• 65% (Psarommmatis et al 2006)
the reported aetiological/risk factors:

- hydrocephalus (Russell et al 2001)
- anoxia (Attias et al 1990, 2007)
- metabolic toxic and/or inflammatory factors (Alexander et al 1995)
- genetic factors
 - familial isolated delay of auditory maturation (Neault & Kenna 2004)
 - syndrome such as maple syrup urine disease (Spankovich et al 2007)
 - coexisting alongside delayed visual maturation in the absence of any known risk indicators has been described (Aldosari et al 2003)
low birth weight and neuromaturation

• Changes in myelination
• Changes in synaptic efficiency
• Other???
Phenotyping of ANSD
At birth:
Normal OAEs
Absent ABR

Prognosis???

Normal auditory function

Total lack of sound awareness

24th November 2008 Brighton, UK
At birth:
Normal OAEs
Absent ABR

by 2 yrs

Normal ABR

by 2 yrs

Absent ABR

Normal hearing thresholds

Normal speech perception

Speech perception worse than expected from audiogram

Elevated hearing thresholds

Speech perception matches audiogram

Speech perception worse than expected from audiogram

24th November 2008 Brighton, UK
At birth:
- Normal OAEs
- Absent ABR

by 2 yrs

Normal ABR

Normal hearing

by 2 yrs

Absent ABR

Normal hearing thresholds

Speech perception worse than expected from audiogram

Speech perception worse than expected from audiogram

Elevated hearing thresholds

Speech perception matches audiogram

Normal speech perception

24th November 2008 Brighton, UK
At birth:
Normal OAEs
Absent ABR

by 2 yrs

Normal ABR

Normal hearing

by 2 yrs

Absent ABR

Normal hearing thresholds

Normal speech perception

Speech perception worse than expected from audiogram

Elevated hearing thresholds

Speech perception worse than expected from audiogram

Speech perception matches audiogram

24th November 2008 Brighton, UK
At birth:
Normal OAEs
Absent ABR

by 2 yrs

Absent ABR

Normal hearing thresholds

Normal speech perception

Speech perception worse than expected from audiogram

Elevated hearing thresholds

Speech perception worse than expected from audiogram

Normal ABR

Normal hearing
t

by 2 yrs

Normal speech perception matches audiogram

24th November 2008 Brighton, UK
At birth:
Normal OAEs
Absent ABR

by 2 yrs

Normal ABR

by 2 yrs

Normal hearing

Absent ABR

Normal hearing thresholds

Normal speech perception

Speech perception worse than expected from audiogram

Elevated hearing thresholds

Speech perception matches audiogram

Speech perception worse than expected from audiogram
take-home messages

• ca 10% of all children with PCHL have ANSD
• 0.2% of all NICU babies have ANSD
• more research needed to understand ANSD in well-baby population
• a proportion of babies identified with ANSD at birth will recover
• knowing aetiopathology may potentially help us choose more appropriate management options
Thank you!